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Abstract. The Semantic Web Resource Description Framework (RDF) format 

is being used by a large number of scientific applications to store and 

disseminate their datasets. The provenance information, describing the source 

or lineage of the datasets, is playing an increasingly significant role in ensuring 

data quality, computing trust value of the datasets, and ranking query results. 

Current Semantic Web provenance tracking approaches using the RDF 

reification vocabulary suffer from a number of known issues, including lack of 

formal semantics, use of blank nodes, and application-dependent interpretation 

of reified RDF triples that hinders data sharing. In this paper, we introduce a 

new approach called Provenance Context Entity (PaCE) that uses the notion of 

provenance context to create provenance-aware RDF triples without the use of 

RDF reification or blank nodes. We also define the formal semantics of PaCE 

through a simple extension of the existing RDF(S) semantics that ensures 

compatibility of PaCE with existing Semantic Web tools and implementations. 

We have implemented the PaCE approach in the Biomedical Knowledge 

Repository (BKR) project at the US National Library of Medicine to support 

provenance tracking on RDF data extracted from multiple sources, including 

biomedical literature and the UMLS Metathesaurus. The evaluations 

demonstrate a minimum of 49% reduction in total number of provenance-

specific RDF triples generated using the PaCE approach as compared to RDF 

reification. In addition, using the PACE approach improves the performance of 

complex provenance queries by three orders of magnitude and remains 

comparable to the RDF reification approach for simpler provenance queries.    

Keywords: Provenance context entity, Biomedical knowledge repository, 

Context theory, RDF reification, Provenir ontology, Provenance Management 

Framework. 

1   Introduction 

An increasing number of scientific applications are storing and disseminating their 

datasets using the Semantic Web Resource Description Framework (RDF) format [1] 

[2] [3]. RDF is also being used as an information integration platform in multiple 

scientific domains. The Biomedical Knowledge Repository (BKR) project at the U.S. 
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National Library of Medicine is creating a comprehensive repository of integrated 

biomedical data from a variety of sources such as biomedical literature (textbooks and 

journal articles), structured data bases (for example the NCBI Entrez system [4]), and 

terminological knowledge sources (for example, the Unified Medical Language 

System (UMLS) [5]) [6]. BKR represents the integrated information in RDF, for 

example, the RDF statement “lipoprotein→affects→inflammatory_cells”1 

was extracted by a text mining tool from a journal article (with PubMed identifier 

PMID: 17209178) and states that lipoprotein (denoted as “subject” of the RDF 

triple2) affects (denoted as “property” of the triple) inflammatory_cells 

(denoted as the “object” of the triple). In addition to the advantages of more 

expressive modeling [7], storing information as RDF statements enables BKR to be 

compatible with the rapidly growing Linked Open Data (LOD) initiative that 

currently has more than 4.2 billion RDF statements representing a large number of 

domains including biomedicine, census data, chemistry, and geography [8]. 

In addition to the biomedical data, BKR also records and uses provenance 

metadata describing the history or lineage of the RDF statements. The provenance 

information identifies the source of an extracted RDF triple, temporal information (for 

example, the date of publication of a source article), version information for a 

database, and the confidence value associated with a triple (indicated by a text mining 

tool). The provenance information is essential in the BKR project to ensure the 

quality of data and associate trust value with the RDF triple. It has specific 

applications in the four services offered by the BKR namely, enhanced information 

retrieval (search based on the named relationship linking two entities), multi 

document summarization, question answering, and knowledge discovery. We describe 

example scenarios that highlight the use of provenance information in the four 

services offered by BKR: 

1. Enhanced information retrieval service: Locate all documents that mention the 

RDF statement lipoprotein→affects→inflammatory_cells. A similar 

query uses the provenance metadata to identify all RDF triples extracted from a 

particular document. 

2. Multi-document summarization: Rank RDF statements from multiple documents 

using the confidence associated with each statement (indicated by the text mining 

tool). 

3. Question answering service: Specify that the answers should be sourced only 

from reputable entities (for example, curated databases) or extracted from a 

journal article published recently (e.g., during the past year).  

4. Knowledge discovery service: Using reasoning rules, implicit knowledge can be 

inferred from existing RDF triples in the BKR project. Often, provenance of the 

original triples is required to accurately interpret new triples. The application of 

reasoning rules can also be restricted to a specific set of RDF triples based on 

their provenance. 

To address the above requirements, BKR collects the provenance information 

associated with an RDF triple at two levels. At the first level, provenance information 

directly associated with a RDF triple is collected, including the source of the triple 

                                                           
1 We use the courier new font to represent RDF and OWL statements. 
2 We use the notions RDF statement, RDF triple, and triple interchangeably in the rest of this paper. 
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(journal article, database) or some confidence value associated with it. At the second 

level, BKR records additional provenance information collectively associated with a 

set of triples. For example, all triples extracted from a given journal article inherit the 

date of publication, author names, and set of index terms of this particular journal 

article (for example, in Medline [9]).  

The RDF reification vocabulary [10] has been traditionally used by Semantic Web 

applications to track provenance in RDF documents. The RDF reification vocabulary 

consists of the four terms rdf:Statement,3 rdf:subject, rdf:predicate, and 

rdf:object. Figure 1 illustrates the two levels of provenance recorded for the triple 

“lipoprotein→affects→inflammatory_cells” using RDF reification. A 

variety of problems have been identified in the use of RDF reification vocabulary for 

provenance tracking in Semantic Web applications and we discuss these issues in the 

next section. 

 

 

Figure 1: Schematic representation of using RDF reification to track 

provenance of a triple 

1.1   Limitations of the RDF Reification and Related Approaches  

The limitations of the RDF reification vocabulary are discussed along two 

dimensions, namely, (a) formal semantics, and (b) implementation issues for real 

world applications. The RDF specification [11] states that the RDF formal semantics 

does not extend to the reification vocabulary, and the intended interpretation of an 

RDF document using reification is application dependent (i.e., it may vary across 

applications) [10]. In addition to limited formal semantics, the RDF syntax does not 

provide a mechanism to link the reified triple to the RDF statement itself [10]. For 

example, there is no support in the RDF syntax to link “TripleID1432” in Figure 1 to 

the triple lipoprotein→affects→inflammatory_cells. The lack of support 

for consistent interpretation of RDF documents using reification is a significant 

                                                           
3 The rdf namespace represents the http://www.w3.org/1999/02/22-rdf-syntax-ns Internationalized 

Resource Identifier (IRI). 

http://www.w3.org/1999/02/22-rdf-syntax-ns
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challenge for scientific projects such as BKR that aim to serve a large community of 

researchers and to support multiple applications. The RDF specification describes a 

“conventional use” of the reification vocabulary [10] where “the subject of a 

reification triple” is a specific RDF triple in a particular RDF document and not any 

RDF triple (that may also have the same subject (S), predicate (P), and object (O)). 

Specifically, the assertion TripleID1432→derives_from→PMID17209178 in 

Figure 1 is not applicable to all triples sharing the same S, P, O. 

Inference rules are an important component of Semantic Web applications, 

especially for knowledge discovery tasks in projects such as the BKR. But, the RDF 

specification states that entailment rules do not hold between an RDF triple and its 

reification [11]. Further, the use of blank nodes, which have no “global meaning” 

outside a particular RDF graph [11] and have no corresponding real world entities in 

scientific domains, is a significant challenge to Semantic Web applications relying on 

reification. The use of blank nodes makes it difficult to use reasoning [12] and 

increases the complexity of query patterns since the queries have to explicitly take 

into account an extra entity (that cannot be “typed” as instance of domain ontology 

class) in the query pattern.  

We now describe the implementation specific limitation of RDF reification. 

Though incorporating additional metadata descriptions in form of provenance 

information necessarily increases the total size of an RDF document, the RDF 

reification approach leads to a disproportionate increase in the total size of the RDF 

document without corresponding enhancement in information content of the RDF 

document. For example, as illustrated in Figure 1, reification of a single RDF triple 

leads to the creation of four extra RDF triples that do not model any provenance-

related information but are merely artifacts of the RDF syntax. This would adversely 

affect the scalability of large projects, such as BKR, that track provenance of 

hundreds of millions of RDF triples. 

We now briefly describe two approaches, namely RDF named graph [13] and RDF 

molecule [14], that enable RDF provenance tracking at different levels of granularity. 

The named graph approach, part of the RDF specification, associates an identifier to 

an RDF graph that allows applications to make assertions about a set of RDF triples 

contained in the graph [13]. The named graph approach also defined the syntax, 

semantics and its relationship to RDF triples. The limitations of the named graph 

include its coarse granularity (that makes it impractical for use in real world 

applications) and the use of blank nodes. The RDF molecule is a similar approach to 

track provenance information at a finer level of granularity through lossless 

decomposition of a RDF graph to identify sub-graphs but not for a triple, using blank 

nodes [14]. In [15], a generalization of the RDF named graphs is proposed called 

“colored RDF triples” that uses a semigroup structure to reason over provenance 

information, but this work does not address the primary disadvantage of the named 

graph approach, that is, use of blank nodes. 

In this paper, we introduce a new approach called Provenance Context Entity 

(PaCE) to enable provenance tracking in Semantic Web applications using neither 

RDF reification vocabulary nor blank nodes. The PaCE approach creates the S, P, O 

RDF entities that reflect the provenance requirements of a Semantic Web application. 

PaCE is part of a broader framework for provenance management in scientific 

applications called PrOM [16]. PrOM consists of a foundational upper-level ontology 
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called provenir (to facilitate provenance interoperability), a set of dedicated 

provenance query operators and a query engine implemented for RDF data stores 

[16]. 

1.2   Contributions and Overview 

The contributions of this paper are four-fold: 

1. Define the PaCE approach to track provenance in RDF-based Semantic Web 

applications without use of reification vocabulary and blank nodes (Section 2),  

2. Define the formal semantics of PaCE, using model theory, by extending the 

existing RDF and RDFS formal semantics to ensure compatibility with existing 

RDF tools and implementations (Section 2 and 3),  

3. Demonstrate the practical feasibility of PaCE through implementation in the 

BKR project (Section 4), and  

4. Evaluate the advantages of PaCE in terms of storage and query performance as 

compared to the RDF reification approach (Section 5).  

We conclude in Section 6. 

2   Foundations of Provenance Context Entity 

The intuition for the PaCE approach is that the provenance associated with RDF 

statements provides the necessary contextual information for applications to interpret 

two RDF statements to be equivalent or distinct. Contexts as formal objects have long 

been used in Artificial Intelligence (AI) applications, such as Cyc [17] and also to a 

limited extent in the Semantic Web, to facilitate processing of information that do not 

have a global frame of reference [18]. The next section reviews the existing work on 

context theory in AI. 

2.1   Context Theory in AI 

Contexts were introduced as formal objects in AI systems in the 1990s [19] [17] to 

allow applications to process statements only in specific frames of reference. Using 

the construct ist (c, p), which asserts that a statement p is true in a context c, context 

theory also defined mechanisms called “lifting rules” to process statements in 

different contexts [19] [17]. Various advantages of using contexts include (a) ability 

to make domain specific assumptions, (b) selection of a manageable subset of the 

knowledge base, and (c) maintaining consistency within a context without the need 

for maintaining global consistency [17]. There has been a lot of work in context 

research including appropriate extensions to the model theory and description of the 

associated computational complexity [20-22].  

Contexts have been introduced for use in the Semantic Web to address challenges 

faced by data aggregation applications such as the TAP project [23]. For example, 

two apparently contradictory statements, “John Kennedy is president of USA” and 

“Barack Obama is president of USA”, can be reconciled using contextual metadata 

describing the temporal information associated with the statements. The context 

mechanism in the TAP project associates a context with each Web data source and all 

information extracted from the source is assumed to be true (in the given context) 
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[23]. The context for Semantic Web uses the ist (c, p) notation with appropriate 

extensions to the RDF model theory [23]. As discussed earlier in [13], these 

extensions to the RDF model theory require significant changes to existing 

implementations of Semantic Web inference systems. In contrast, existing 

implementations can process RDF documents that use the PaCE approach, which is 

defined in the next section, to track provenance information. 

2.2   Provenance Context and RDF Generation 

The contextual information in the BKR project consists of the provenance information 

about the source of an RDF statement, that is, the journal identifier or the UMLS 

identifier or the Entrez Gene identifier. In other words, this provenance context is a 

formal object instantiated in form of set of concepts and relationships that capture the 

necessary contextual provenance information to enable application to correctly 

interpret RDF statements. Similar to the provenance context defined in the BKR 

project, other Semantic Web applications can also define a relevant provenance 

context for interpreting their RDF dataset. For example, an application in the sensor 

domain can define its provenance context to consist of sensor used to collect data 

readings, the geographical location of the sensor, and the timestamp value associated 

with a data reading. To formalize the notion of provenance context we define it in 

terms of the foundational model of provenance called provenir ontology (Figure 2) 

[24]. The provenir ontology is a upper-level provenance ontology representing a 

minimum set of provenance concepts common across domains and is modeled using 

the description logic profile of the W3C Web Ontology Language (OWL-DL) [25]. 
 

 

Figure 2: Upper-level provenir provenance ontology schema 

The role of domain-independent upper ontologies to facilitate interoperability, 

consistent modeling of concepts, and uniform use of terms has led to creation of a 

number of ontologies such as BFO [26], DOLCE [27], and SUMO [28]. In addition to 
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these upper ontologies, a set of “domain upper ontologies” have also been proposed, 

such as BioTop [29] and Simple Bio Upper ontology [30], that serve as intermediate 

level ontologies between the highly specific domain ontologies (for example, Gene 

Ontology [31]) and abstract upper ontologies. The provenir ontology is one such 

upper domain ontology for provenance modeling that facilitates consistent modeling 

of interoperable provenance information. The provenir ontology has been successfully 

extended to create domain-specific provenance ontologies in multiple projects [24] 

[32], including the Parasite Experiment ontology that has been listed in the BioPortal, 

the ontology repository of the National Center for Biomedical Ontologies (NCBO).  

The provenir ontology consists of three primary concepts of “data”, “agent” and 

“process” linked by ten relationships adapted from the upper-level Relation 

Ontology [33] (Figure 2). An application can define its provenance context either in 

terms of the provenir ontology or in terms of a domain-specific provenance ontology, 

which extends provenir ontology. For example, the BKR project uses the UMLS 

Semantic Network (SN) [5] as the domain ontology and hence defines its provenance 

context in terms of the SN (in section 4 we describe the mapping of relevant SN terms 

to the provenir ontology).  

 

 

Figure 3: Schematic representation of provenance context for the BKR 

project and a sensor application 

Figure 3 (a) illustrates the BKR provenance context for the BKR project and 

Figure 3 (b) illustrates the provenance context for the sensor domain (consisting of the 

sensor identifier, the geographical location of a sensor, and date-time value associated 

with a sensor reading). It is important to note that the classes and properties used to 

define the provenance contexts for the BKR and sensor domain application can be 

linked to the provenir ontology using either “subclass” or “sub-property” relations. 

The use of the provenir ontology to define a provenance context has several 

advantages including the flexibility to model domain-specific provenance at a fine 

level of granularity, while ensuring consistent modeling and the support for RDF and 

OWL inferencing [11]. Further, applications can leverage a set of dedicated 

provenance query operators, defined in terms of the provenir ontology, as part of the 

broader provenance management framework called PrOM [16]. Though provenance 

context as a notion is derived from the context theory used in AI systems, it is distinct 

(a) 
(b) 
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in terms of both formal semantics and implementation. These differences are listed 

below: 

1. A provenance context is used only for generating the S, P, O of an RDF triple and 

this approach of generating “provenance-aware” RDF triples is called the 

Provenance Context Entity (PaCE) approach. In contrast, traditional AI systems 

use context primarily during processing or interpreting data.  

2. The PaCE approach involves apriori use of the context object during RDF triple 

generation; hence it does not use the ist (c, p) construct to interpret RDF 

statements. In addition, unlike the context mechanism introduced in [23], the 

PaCE approach does not require extensive modifications to the RDF model 

theory (described in Section 3). 

3. The PaCE approach defines a single application-wide provenance context and 

unlike traditional AI systems does not include multiple context objects. Hence, 

the PaCE approach does not require use of lifting rules to process RDF 

statements in different contexts [17]. 

The PaCE approach allows an application to decide the level of granularity in 

modeling provenance of an RDF triple. For example, Figure 4 illustrates the three 

possible implementations of the PaCE approach in the BKR project that create 

distinct RDF triples extracted from two separate journal articles (though they share 

the same S, P, and O). The first implementation (Figure 4 (a)) is an exhaustive 

approach and explicitly links the S, P, and O to the source journal article and the 

second implementation (Figure 4 (b)) is a minimalist approach that links only the S of 

a RDF triple to the source article. Though the first implementation creates three 

provenance-specific triples, in contrast to just one triple by second implementation, 

there is no ambiguity in correctly interpreting the provenance of the triples. The 

second implementation, on the other hand, requires the application to make additional 

assumption, while processing the RDF triples, that the whole triple is extracted from 

the same source as the source of S. Hence, the additional complexity associated with 

the second implementation may make it unsuitable for some applications.  

 
 

 

 

Figure 4: Implementation of the PaCE mechanism to track provenance of RDF triples 

extracted from two journal articles 
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The third implementation (Figure 4(c)) takes an intermediate approach that creates 

two additional provenance-specific triples but requires the application to assume that 

the source of the O is the same as the S, and P. Similar to the minimalist approach, 

this approach reduces the total number of provenance-specific RDF triples, but 

introduces additional complexity that may make this approach unsuitable for some 

applications. The choice to associate explicit “derives_from” property with one 

particular RDF component (S or P or O) in the minimalist (Figure 4 (b)) and the 

intermediate (Figure 4(c)) is arbitrary and has minimal impact on the provenance 

tracking functionality of the application.  

It is important to note that, in contrast to the reification approach, none of the three 

variants of the PaCE approach requires the use of RDF reification vocabulary or the 

use of blank nodes. Further, the reification approach creates a total of six RDF triples 

(Figure 1) for each RDF triple, while the exhaustive implementation of the PaCE 

approach creates a total of four triples for one RDF triple. This difference in the total 

number of RDF triples generated by the reification approach versus the PaCE 

approach has significant impact on the scalability of applications incorporating 

provenance information in real world applications, such as the BKR project that 

includes millions of RDF triples. This significant difference in total number of 

provenance-related RDF triples generated using the PaCE approach as compared to 

the RDF reification approach is further discussed in Section 5 (Evaluation). 

Overall, the PaCE approach is an incremental and simple mechanism that does not 

define additional vocabulary or require changes to existing RDF data stores. In 

addition, the PaCE approach does not require modifications to existing RDF or OWL 

inference systems used in many Semantic Web applications. We now introduce the 

formal specification of provenance context. 

2.3   Formal Specification of Provenance Context 

The provenance information represented by a provenance context is an RDF/XML 

document grounded in the provenir ontology. Specifically, a provenance context 

consists of: 

a) Provenir ontology classes and properties 

b) Classes and properties of domain-specific ontologies that extend the provenir 

ontology using rdfs:subClassOf4 and/or rdfs:subPropertyOf, where the 

provenir ontology classes and properties are the “super class” or “super 

property”. 

c) Instances (created using the rdf:type statements) 

A detailed description of the provenir ontology classes and relationships is presented 

in [16]. In the next section, we introduce the formal semantics of PaCE that allows the 

definition of valid inference rules for PaCE provenance information in Semantic Web 

applications. 

                                                           
4 The rdfs namespace represents the http://www.w3.org/2000/01/rdf-schema IRI 

http://www.w3.org/2000/01/rdf-schema
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3   Model Theoretic Semantics of PaCE Inferencing 

The primary motivating factor for defining the formal semantics of PaCE is to provide 

a way to determine the validity of the inferencing process for Semantic Web 

applications that use the PaCE approach to track provenance. For example, the BKR 

project can derive a ranking of RDF statements extracted from journal articles by 

inferring the confidence value of an RDF statement from the precision and recall 

values indicated by a text mining tool. To define the formal semantics of PaCE we 

use model theory. Specifically, we build on the approach used to define the formal 

semantics for RDF and RDF Schema (RDFS) [11] to define the model theoretic 

semantics of PaCE. So our definition is based on the notions of interpretations and 

models, which are structures that enable us to capture information about truth values 

(true or false) of assertions [11]. In other words, if a particular interpretation I satisfies 

a specific assertion s ∈ V then we call I a model of s and write I ╞ s in this case 

(where V is a vocabulary and ╞ is the so-called entailment relation).  

Following [11], a simple interpretation I of a vocabulary V consists of 

 a non empty set of resources IR that constitutes the domain or universe of I, 

 a set of properties of I called IP, 

 a function IEXT: IP → 2IR×IR that maps each property in IP to a pair of resources in 

IR, 

 a function IS: V → IR ∪ IP which maps IRIs in V to the union of IR and IP, 

 a function IL which maps typed literals from V to resources in IR, and 

 a subset of IR called set of literal values, LV, containing all untyped literals from 

V,  

Each interpretation I then gives rise to an interpretation function ∙I, which maps each 

triple (over IR, IP, V and LV) to a truth value (true or false) in a canonical way (see 

[11]) An interpretation I of a graph R is said to be a model of R if I maps each triple in 

R to the truth value true. We write I╞ R in this case. Simple interpretations allows us 

to define an entailment relation between graphs, that is, a graph R1 (simply) entails a 

graph R2 if every simple interpretation that is a model of R1 is also a model of R2. A 

simple interpretation of a vocabulary V ∪ VRDF ∪ VRDFS is called an RDFS 

interpretation of V if it satisfies a number of additional constraints specified in [11]. 

We say that a graph R1 RDFS-entails a graph R2 if every RDFS interpretation that is a 

model of R1 is also a model of R2. 

The definition of the model-theoretic semantics of PaCE is a straightforward 

modification of the existing RDFS semantics and allows us to infer additional 

provenance information for triples by virtue of having similar source. Let provenance 

context pc of an RDF triple α (= (S, P, O)) be the common object of the predicate 

provenir:derives_from associated with the triple. We define an RDFS-PaCE-

interpretation I of a vocabulary V to be an RDFS-interpretation of the vocabulary V 

∪ VPaCE that satisfies the following additional condition (meta-rule): 

 For RDF triples α = (S1,P1,O1) and β = (S2,P2,O2), (provenance-determined) 

predicates p and entities v,  

if pc(α) = pc(β)  

then  (S1, p, v) = (S2, p, v) and, (P1, p, v) = (P2, p, v) and,  (O1, p, v) = (O2, p, v) 

Provenance-determined predicates and entities are specific to the application domain. 
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Furthermore, a graph R1 PaCE-entails a graph R2 if every RDFS-PaCE-interpretation 

that is a model of R1 is also a model of R2. To illustrate the PaCE inference process, 

we consider two RDF statements in the BKR project (Figure 5). Given that the two 

RDF statements have equal provenance contexts (PubMed identifier: 

PMID17209178) additional provenance information, such as the confidence score 

(formalized via provenance-related predicate has_confidence_value and value 

confidence_value_2), associated with one of the triples can be inferred for the 

other RDF triple (flow_cytometry→measures→interleukin-1_beta) denoted 

by dotted arrows in Figure 5. 

 

Figure 5: PaCE inferencing  

We note that PaCE-entailment is strictly stronger than RDFS-entailment in the 

sense that all inferences which can be drawn using simple, RDF, or RDFS-entailment 

are also PaCE entailments. This is a deliberately conservative step on top of the 

existing Semantic Web recommendations that enables PaCE to be compatible with 

existing OWL and RDF tools and applications, and also allows implementing the 

PaCE-semantics by making reference to RDF reasoners as black boxes. In the next 

section, we describe the implementation of the BKR project using the PaCE approach. 

4   Implementation: Using PaCE Approach in the BKR Project  

Implementing the PaCE approach in BKR project involves two steps, namely, (a) 

Extending the provenir ontology with domain-specific concepts that serve as a 

reference for the definition of contextualized instances in the BKR, and (b) generating 

instance-level RDF triples leveraging the provenance model for data from several 

sources. We first describe the extension of the provenir ontology. 

4.1   Extending the Provenir Ontology with Domain-specific Concepts 

The provenir ontology provides a domain-independent model for provenance, which 

needs to be extended with domain-specific concepts in order to support the creation of 

contextualized instances. We use the Unified Medical Language System (UMLS) as 
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our main source of biomedical concepts [34]. More specifically, high-level categories 

(semantic types) from the UMLS Semantic Network can be integrated as subclasses 

(rdfs:subClassOf) of the provenir classes provenir:data or provenir:event. 

In turn, the two million concepts from the larger UMLS Metathesaurus are integrated 

as subclasses of the semantic types, using the categorization link provided by the 

UMLS. The provenir ontology is also extended with some 27,000 genes from Entrez 

Gene for better coverage of genomic entities. 

Instances in the BKR are defined in reference to these domain-specific concepts. 

Analogously, instance-level predicates in the BKR are defined as subproperties 

(rdfs:subPropertyOf) of the 53 named relationships provided by the UMLS 

Semantic Network. A mapping between instance-level and Semantic Network 

predicates was created manually. In addition to links (rdf:type) between instances 

from the BKR and the corresponding classes, the definition of BKR provenance 

context in enabled through the provenir:derives_from relationship linking a 

triple to its source. The provenir:derives_from property is adapted from the 

derives_from property defined in the upper-level Relation Ontology and is used to 

model the “derivation history of data entities as a chain or pathway” [33]. 

4.2   Generating RDF Triples using the PaCE Approach 

Contextualized RDF triples in the BKR represent knowledge extracted from the 

biomedical literature, as well as relations from the UMLS Metathesaurus. RDF triple 

entities (S, P, O) are identified using an unique identifier called the Uniform 

Resources Identifier (URI). A practical challenge for implementing the PaCE 

approach in the BKR is to formulate an appropriate provenance context-based URI 

(URIp) scheme that also conforms to best practices of creating URIs for the Semantic 

Web, including support for use of HTTP protocol [35].  

The design principle of URIp is to incorporate a “provenance context string” as the 

identifying reference of an entity and is a variation of the “reference by description” 

approach that uses a set of description to identify an entity [35]. The syntax for URIp 

consists of the <base URI>, the <provenance context string>, and the 

<entity name>. For example, the URIp for the entity lipoprotein is 
http://mor.nlm.nih.gov/bkr/PUBMED_17209178/lipoprotein 

where the PUBMED_17209178 provenance context string identifies the source of a 

specific instance of lipoprotein. 

This approach to create URIs for RDF entities also enables BKR (and other 

Semantic Web applications using the PaCE approach) to group together entities with 

the same provenance context. For example,  

 http://mor.nlm.nih.gov/bkr/PUBMED_17209178/lipoprotein 

 http://mor.nlm.nih.gov/bkr/PUBMED_17209178/affects 

 http://mor.nlm.nih.gov/bkr/PUBMED_17209178/ 

inflammatory_cells 

are entities extracted from the same journal article. Using this URI scheme, RDF 

statements were generated for the original triples (extracted from the biomedical 

literature by a text-mining application or found in the UMLS Metathesaurus). 

In the next section, we evaluate the implementation of the PaCE approach to track 

provenance in the BKR project as compared to the RDF reification approach. 
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5   Evaluation 

The objective of our experiment is to evaluate the advantages of using the PaCE 

approach in place of the RDF reification approach to track provenance in the BKR 

project. Three specific aspects are investigated: 

1. Measure the burden of representing provenance information, in number of triples 

required, compared to a “base dataset” (B) with no provenance information 

2. Analyze the performance of four BKR provenance queries 

3. Demonstrate the use of provenance information to support analytical queries in 

the BKR project and measure the associated cost in performance 

The base dataset (B) comprises of 23,433,657 RDF triples extracted from two 

sources: the biomedical literature (PubMed) and the UMLS Metathesaurus. 

The open source Virtuoso RDF store version 06.00.3123 was used for the 

experiments running on a Dell 2950 server (Dual Xeon processor) with 8GB of 

memory. A total of 500,000 9kB buffers were allocated to Virtuoso RDF store. 

5.1   Number of Provenance-specific RDF Triples Generated 

To evaluate the number of provenance-specific RDF triples generated using the two 

approaches, we augment the base dataset B with provenance information representing 

the source information of each triple. For the PaCE approach, we create three datasets 

representing the exhaustive (E_PaCE), minimalist (M_PaCE), and intermediate 

(I_PaCE) approaches illustrated in Figure 4 (a), 4 (b) and 4 (c), respectively. For the 

RDF reification dataset (R), we use the standard method (presented in Section 1). 

Figure 6 shows that the reification approach requires twice as many RDF triples 

(~152 million) for the representation of provenance information compared to the 

E_PaCE approach (~89 million). This 49% difference between E_PaCE and R 

represents a significant reduction in storage requirements (~85 million fewer triples) 

for the BKR project and, more generally, clearly demonstrates the practical benefits 

of using the PaCE approach over reification to track provenance in Semantic Web 

applications. Analogously, the M_PaCE and I_PaCE approaches create 72% and 59% 

fewer provenance-specific triples compared to the reification approach. 

 

Figure 6: The relative number of provenance-specific triples created using 

PaCE and RDF reification 
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5.2   Performance of Provenance Queries 

We use four representative categories of provenance queries in the BKR project to 

evaluate the query performance for the four datasets (E_PaCE, M_PaCE, I_PaCE and 

Reification). We describe the pattern of the four queries and their significance in the 

BKR project: 

Query Pattern 1: List all the RDF triples extracted from a given journal article (e.g., 

journal article identified by PMID17209178). This query is used to retrieve all the 

triples from a given source. 

Query Pattern 2: List all the journal articles from which a given RDF triple was 

extracted (e.g., lipoprotein→affects→inflammatory_cells). This query 

identifies the source(s) of a given triple. 

Query Pattern 3: Count the number of triples in each source (biomedical literature 

and UMLS Metathesaurus) for the therapeutic use (predicate = treats) of a given drug 

(e.g., Thalidomide). This complex query illustrates the use of the BKR as a 

knowledge base for a query answering application (e.g., which diseases are treated by 

a particular drug?). 

Query Pattern 4: Count the number of journal articles published between two dates 

(e.f., 2000-01-01 and 2000-12-31) for a given triple (e.g., thalidomide → treats 

→ multiple myeloma). This typical information retrieval query leverages the 

provenance information associated with each triple. A more complex version of this 

query is used Section 5.2 for time series analysis. 

 

We conducted the query performance evaluation in two phases. In the first phase the 

four queries are evaluated for fixed values, namely the value underlined in the query 

description above. In the second phase, queries are evaluated using a larger set of 

values. The queries are expressed in SPARQL syntax, the RDF query language [36], 

and primarily utilize the SPARQL basic graph patterns (BGP) with FILTER 

conditions. The queries are not listed in the paper due to space constraints and are 

available online along with the result set.5 The numbers reported for the “fixed” value 

queries (first phase) are the average of last 5 of a total of 20 runs. The first phase of 

the evaluation starts with a “cold” cache for each query pattern. 

The results in Figure 7 demonstrate that query performance for PaCE is generally 

better than or similar to reification. As expected, M_PaCE generally performs better 

than I_PaCE, and I_PaCE better than E_PaCE. However, reification performs better 

than I_PaCE for Query 1 and better than both I_PaCE and E_PaCE for Query 3. 

Query 4 is a complex query that uses the SPARQL FILTER to restrict publication 

dates to a particular range (January 1 to December 31, 2000). In this query, the query 

performance for E_PaCE is more than two orders of magnitude better than for R. 

In the second phase of the evaluation, we aim to reflect the real-world requirements 

of the BKR project. Toward this end, each of the four query patterns is executed with 

different values, as if by different users. In practice, we use sets of 100 values for each 

query pattern. The resulting set of 100 queries is run 5 times (immediately following 

the first phase of evaluation for each dataset) and the average of the 100 queries for 

the last run is presented (Figure 8).  

                                                           
5 Query and result set available at: http://wiki.knoesis.org/index.php/ProvenanceContextEntity 
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Figure 7: Query performance for fixed values 

Figure 8: Query performance for query patterns using a set of 100 values 
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The results confirm the trend seen in the first phase of evaluation, with the added 

observation that for Query Pattern 3 the difference between E_PaCE and R has 

decreased (R no longer outperforms E_PaCE significantly). In contrast, for the 

complex Query Pattern 4, the query performance for E_PaCE has further improved 

and is more than three orders of magnitude better than for R. The second phase of 

evaluation also confirms that in a real-world scenario the query performance of PaCE 

is comparable to reification for simple provenance queries and significantly better for 

complex provenance queries. 

In the next section, we evaluate the query performance for an analytical query in 

the BKR project that uses provenance information for identify the publication pattern 

of journal articles on a specific topic of interest. 

5.3   Application to Time Profiling of Scientific Results 

An important objective for many applications and funding agencies is to understand 

the trend in research focused on a specific topic in biomedicine over a period of time. 

We extend the Query Pattern 4 discussed in the previous section to define a query 

that collates the number of journal articles published over a period of 10 years (i.e., 

the span of the current BKR). As an example, we focus on mentions of the therapeutic 

use of the drug Thalidomide over time. This query translates to a complex SPARQL 

query that uses functions to aggregate number of publications per year. Figure 9 (a) 

shows a histogram created directly from the query results. The query performance is 

similar to what was observed for Query Pattern 4, that is, E_PaCE is three orders of 

magnitude faster than R (Figure 9(b)). This example demonstrates the feasibility of 

using RDF and SPARQL for representing and exploiting provenance information in 

large triple stores serving real-world applications. 

 

 

6   Conclusion 

We show that that challenge of provenance tracking in RDF datasets can be 

effectively and efficiently addressed by using the PaCE approach in place of the RDF 

reification vocabulary. The PaCE approach addresses many of the issues associated 

with RDF reification, including lack of formal semantics, use of blank nodes, and 

Figure 9 (a)  Figure 9 (b) 
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application-dependent interpretation of RDF documents. The PaCE approach uses the 

formal objects called provenance contexts that are defined in terms of the provenir 

upper-level provenance ontology to create provenance-aware RDF triple entities of S, 

P, and O. The model-theoretic semantics of PaCE is defined through a simple 

extension of the existing RDFS formal semantics. We implemented the PaCE 

approach in the BKR project. The evaluations demonstrate that using the PaCE 

approach to create provenance-specific RDF triples not only reduces the number of 

triples by at least 49% but also improves the performance of complex provenance 

queries by three orders of magnitude. We plan to extend BKR with data from 

additional sources and use the PaCE approach for provenance tracking. 
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